Experimental Research on Heat Exchanger Control Based on Hybrid Time and Frequency Domain Identification

Author:

Jin Yuhui,Sun LiORCID,Hua Qingsong,Chen Shunjia

Abstract

A heat exchanger is widely used for energy management or heat recovery in sustainable energy systems. In many application cases, the outlet temperature should be strictly controlled as desired. However, it is challenging to obtain an accurate dynamic model due to the high-order dynamics, thus reducing the control performance. To this end, this paper proposes a novel identification method by considering the heating process as an approximate second-order plus time delay (SOPDT) model. A normalized analysis indicates that the time-scaled step responses of the general second-order models almost intersect at the same point, which leads to an equation describing the sum of the time constants. Critical stability analysis based on the Nyquist criterion gives another two equations in the frequency domain. Hence the time constants and time delay can be obtained by solving the equations. Illustrative examples show the identification efficiency of the proposed method in the parameter estimation, model reduction, and anti-noise performance. With an effective identification, the high-fidelity SOPDT model makes the PID controller tuning less challengeable. The simulation results based on a benchmark heat exchanger model demonstrate the feasibility of the identification and control. Finally, a real heat exchanger control facility is built and the experimental performance agrees well with the simulation expectation, depicting a promising application prospect in future sustainable applications.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3