Landslide Displacement Prediction of Shuping Landslide Combining PSO and LSSVM Model

Author:

Jia Wenjun1,Wen Tao12ORCID,Li Decheng1,Guo Wei1,Quan Zhi1,Wang Yihui1,Huang Dexin1,Hu Mingyi12

Affiliation:

1. School of Geosciences, Yangtze University, Wuhan 430100, China

2. Jiacha County Branch of Hubei Yangtze University Technology Development Co., Ltd., Shannan 856499, China

Abstract

Predicting the deformation of landslides is significant for landslide early warning. Taking the Shuping landslide in the Three Gorges Reservoir area (TGRA) as a case, the displacement is decomposed into two components by a time series model (TSM). The least squares support vector machine (LSSVM) model optimized by particle swarm optimization (PSO) is selected to predict the landslide displacement prediction based on rainfall and reservoir water level (RWL). Five parameters, including rainfall over the previous month, rainfall over the previous two months, RWL, change in RWL over the previous month and period displacement over the previous half year, are selected as the input variables. The relationships between the five parameters and the landslide displacement are revealed by grey correlation analysis. The PSO-LSSVM model is used to predict the periodic term displacement (PTD), and the least squares method is applied to predict the trend term displacement (TTD). With the same input variables, the back propagation (BP) model and the PSO-SVM model are also developed for comparative analysis. In the PSO-LSSVM model, the R2 of three monitoring stations is larger than 0.98, and the MAE values and the RMSE values are the smallest among the three models. The outcomes demonstrate that the PSO-LSSVM model has a high accuracy in predicting landslide displacement.

Funder

National Natural Science Foundation of China

Science and technology program of Tibet Autonomous Region

Open Fund of Badong National Observation and Research Station of Geohazards

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3