Edge Computing for Vision-Based, Urban-Insects Traps in the Context of Smart Cities

Author:

Saradopoulos Ioannis,Potamitis Ilyas,Ntalampiras StavrosORCID,Konstantaras Antonios I.ORCID,Antonidakis Emmanuel N.

Abstract

Our aim is to promote the widespread use of electronic insect traps that report captured pests to a human-controlled agency. This work reports on edge-computing as applied to camera-based insect traps. We present a low-cost device with high power autonomy and an adequate picture quality that reports an internal image of the trap to a server and counts the insects it contains based on quantized and embedded deep-learning models. The paper compares different aspects of performance of three different edge devices, namely ESP32, Raspberry Pi Model 4 (RPi), and Google Coral, running a deep learning framework (TensorFlow Lite). All edge devices were able to process images and report accuracy in counting exceeding 95%, but at different rates and power consumption. Our findings suggest that ESP32 appears to be the best choice in the context of this application according to our policy for low-cost devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3