Numerical Analysis of the Deformation Performance of Monopile under Wave and Current Load

Author:

Chen Libo,Yang Xiaoyan,Li Lichen,Wu Wenbing,El Naggar M. HeshamORCID,Wang Kuihua,Chen Jinyong

Abstract

The research on the deformation mechanism of monopile foundation supporting offshore wind turbines is significant to optimize the design of a monopile foundation under wave and current load. In this paper, a three-dimensional wave-pile-soil coupling finite element model is proposed to investigate the deformation mechanism of monopile undercurrent and fifth-order Stokes wave. Different from the conventional assumption that there is no slip at the pile-soil interface, Frictional contact is set to simulate the relative movement between monopile and soil. Numerical results indicate that under extreme environmental conditions, the monopile foundation sways within a certain range and the maximum displacement in the loading direction is 1.3 times the displacement in the reverse direction. A further investigation has been made for a large-diameter pipe pile with various design parameters. The finite element analyses reveal that the most efficient way to reduce the deflection of the pile head is by increasing the embedment depth of the monopile. When the embedment depth is limited, increasing the pile diameter is a more effective way to strengthen the foundation than increasing the wall thickness.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Status, plans and technologies for offshore wind turbines in Europe and North America

2. Structural design of an adaptable jacket offshore wind turbine support structure for deeper waters;Yeter,2016

3. The European offshore wind industry;Key Trends Stat.,2016

4. DNVGL-ST-0126: Support Structures for Wind Turbineshttp://rules.dnvgl.com/docs/pdf/dnvgl/ST/2016-04/DNVGL-ST-0126.pdf

5. API Recommended Practice 2A-WSD Planning, Designing, and Constructing Fixed Offshore Platforms—Working Stress Designhttps://www.api.org/~/media/files/publications/whats%20new/2a-wsd_e22%20pa.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3