Solar Cell Technology Selection for a PV Leaf Based on Energy and Sustainability Indicators—A Case of a Multilayered Solar Photovoltaic Tree

Author:

Kumar Nallapaneni ManojORCID,Chopra Shauhrat S.ORCID,Malvoni MariaORCID,Elavarasan Rajvikram MaduraiORCID,Das NarottamORCID

Abstract

Harnessing energy from the sunlight using solar photovoltaic trees (SPVTs) has become popular at present as they reduce land footprint and offer numerous complimentary services that offset infrastructure. The SPVT’s complimentary services are noticeable in many ways, e.g., electric vehicle charging stations, landscaping, passenger shelters, onsite energy generated security poles, etc. Although the SPVT offers numerous benefits and services, its deployment is relatively slower due to the challenges it suffers. The most difficult challenges include the structure design, the photovoltaic (PV) cell technology selection for a leaf, and uncertainty in performance due to weather parameter variations. This paper aims to provide the most practical solution supported by the performance prioritization approach (PPA) framework for a typical multilayered SPVT. The proposed PPA framework considers the energy and sustainability indicators and helps in reporting the performance of a multilayered SPVT, with the aim of selecting an efficient PV leaf design. A three-layered SPVT (3-L SPVT) is simulated; moreover, the degradation-influenced lifetime energy performance and carbon dioxide (CO2) emissions were evaluated for three different PV-cell technologies, namely crystalline silicon (c-Si), copper indium gallium selenide (CIGS), and cadmium telluride (CdTe). While evaluating the performance of the 3-L SPVT, the power conversion efficiency, thermal regulation, degradation rate, and lifecycle carbon emissions were considered. The results of the 3-L SPVT were analyzed thoroughly, and it was found that in the early years, the c-Si PV leaves give better energy yields. However, when degradation and other influencing weather parameters were considered over its lifetime, the SPVT with c-Si leaves showed a lowered energy yield. Overall, the lifetime energy and CO2 emission results indicate that the CdTe PV leaf outperforms due to its lower degradation rate compared to c-Si and CIGS. On the other side, the benefits associated with CdTe cells, such as flexible and ultrathin glass structure as well as low-cost manufacturing, make them the best acceptable PV leaf for SPVT design. Through this investigation, we present the selection of suitable solar cell technology for a PV leaf.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3