Identifying Flow Patterns in a Narrow Channel via Feature Extraction of Conductivity Measurements with a Support Vector Machine

Author:

Yang Kai12,Liu Jiajia12,Wang Min3ORCID,Wang Hua1,Xiao Qingtai12ORCID

Affiliation:

1. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China

2. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

3. Department of Management Science and Statistics, The University of Texas at San Antonio, San Antonio, TX 78249-0634, USA

Abstract

In this work, a visualization experiment for rectangular channels was carried out to explore gas–liquid two-phase flow characteristics. Typical flow patterns, including bubble, elastic and mixed flows, were captured by direct imaging technology and the corresponding measurements with fluctuation characteristics were recorded by using an electrical conductivity sensor. Time-domain and frequency-domain characteristics of the corresponding electrical conductivity measurements of each flow pattern were analyzed with a probability density function and a power spectral density curve. The results showed that the feature vectors can be constructed to reflect the time–frequency characteristics of conductivity measurements successfully by introducing the quantized characteristic parameters, including the maximum power of the frequency, the standard deviation of the power spectral density, and the range of the power distribution. Furthermore, the overall recognition rate of the four flow patterns measured by the method was 93.33% based on the support vector machine, and the intelligent two-phase flow-pattern identification method can provide a new technical support for the online recognition of gas–liquid two-phase flow patterns in rectangular channels. It may thus be concluded that this method should be of great significance to ensure the safe and efficient operation of relevant industrial production systems.

Funder

Yunnan Fundamental Research Project, China

Natural Science Foundation of Yunnan Province, China

Interdisciplinary Research Project of Kunming University of Science and Technology

Young Talent Training Program for Science and Technology Think Tank by the China Association for Science and Technology

Young Elite Scientist Sponsorship Program by the China Association for Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3