A Brief Review of Acoustic and Vibration Signal-Based Fault Detection for Belt Conveyor Idlers Using Machine Learning Models

Author:

Alharbi Fahad12ORCID,Luo Suhuai1,Zhang Hongyu1,Shaukat Kamran13ORCID,Yang Guang1,Wheeler Craig A.4ORCID,Chen Zhiyong4

Affiliation:

1. School of Information and Physical Sciences, The University of Newcastle, Newcastle, NSW 2308, Australia

2. Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3. Department of Data Science, University of the Punjab, Lahore 54890, Pakistan

4. School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia

Abstract

Due to increasing demands for ensuring the safety and reliability of a system, fault detection (FD) has received considerable attention in modern industries to monitor their machines. Bulk materials are transported worldwide using belt conveyors as an essential transport system. The majority of conveyor components are monitored continuously to ensure their reliability, but idlers remain a challenge to monitor due to the large number of idlers (rollers) distributed throughout the working environment. These idlers are prone to external noises or disturbances that cause a failure in the underlying system operations. The research community has begun using machine learning (ML) to detect idler’s defects to assist industries in responding to failures on time. Vibration and acoustic measurements are commonly employed to monitor the condition of idlers. However, there has been no comprehensive review of FD for belt conveyor idlers. This paper presents a recent review of acoustic and vibration signal-based fault detection for belt conveyor idlers using ML models. It also discusses major steps in the approaches, such as data collection, signal processing, feature extraction and selection, and ML model construction. Additionally, the paper provides an overview of the main components of belt conveyor systems, sources of defects in idlers, and a brief introduction to ML models. Finally, it highlights critical open challenges and provides future research directions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3