Canopy Temperature Differences between Liana-Infested and Non-Liana Infested Areas in a Neotropical Dry Forest

Author:

Yuan Xu,Laakso KatiORCID,Marzahn PhilipORCID,Sanchez-Azofeifa G. ArturoORCID

Abstract

Lianas (woody vines) are important non-structural elements of all tropical forests. Current field observations across the Neotropics suggest that liana abundance is rising as a result of forest disturbance, increasing atmospheric CO2, and more frequent extreme climate events. Lianas can cause mechanical stress on their host trees, thus increasing mortality, in addition to potentially reducing carbon storage capacity. Furthermore, previous studies have suggested that liana leaves have an overall higher temperature than tree leaves, which presents the question of whether these differences can be extended from the leaf to the canopy. In this context, the ability to detect these temperature differences from a remote sensing platform has so far not been put into test, despite the importance such knowledge can have in large-scale land surface modeling studies and liana extent monitoring. To partially fill this knowledge gap, we acquired thermal infrared data using an unmanned aerial vehicle (UAV) system over an intermediate tropical dry forest in Costa Rica, Central America. Classification results from a previous study in the same area were used to subset the thermal infrared images into liana-infested areas, non-liana infested areas, and forest gaps. The temperature differences between these three image components were then investigated using the Welch and Games–Howell post-hoc statistical tests. Our results suggest that liana-infested areas have, on average, a statistically significant higher temperature than non-liana infested areas. Shadowed forest gaps, used as reference, have a cooler temperature than forest canopies. Our findings on the temperature differences between liana-infested and non-liana infested areas support previous leaf-level observations and open the door to the use of new approaches for the classification and modeling of liana infestation in tropical ecosystems.

Funder

Natural Sciences and Engineering Research Council of Canada

China Scholarship Council

Publisher

MDPI AG

Subject

Forestry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3