Abstract
As the foundation of Posture Analysis, recognizing human activity accurately in real time assists in using machines to intellectualize living condition and monitor health status. In this paper, we focus on recognition based on raw time series data, which are continuously sampled by wearable sensors, and a fine-grained evidence reasoning approach has been proposed to produce a timely and reliable result. First, the basic time unit of input data is selected by finding a tradeoff between accuracy and time cost. Then, the approach uses Long Short Term Memory to extract features and project raw multidimensional data into probability assignments, followed by trainable evidence combination and inference network that reduce uncertainly to improve the classification accuracy. Experiments validate the effectiveness of fine granularity and evidence reasoning while the final results indicate that the recognition accuracy of this approach can reach 96.4% with no additional complexity in training.
Funder
National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献