68Ga-Labeling: Laying the Foundation for an Anti-Radiolytic Formulation for NOTA-sdAb PET Tracers

Author:

Baudhuin Henri,Cousaert Julie,Vanwolleghem Philippe,Raes GeertORCID,Caveliers Vicky,Keyaerts MarleenORCID,Lahoutte Tony,Xavier CatarinaORCID

Abstract

During the preparation of [68Ga]Ga-NOTA-sdAb at high activity, degradation of the tracers was observed, impacting the radiochemical purity (RCP). Increasing starting activities in radiolabelings is often paired with increased degradation of the tracer due to the formation of free radical species, a process known as radiolysis. Radical scavengers and antioxidants can act as radioprotectant due to their fast interaction with formed radicals and can therefore reduce the degree of radiolysis. This study aims to optimize a formulation to prevent radiolysis during the labeling of NOTA derivatized single domain antibody (sdAbs) with 68Ga. Gentisic acid, ascorbic acid, ethanol and polyvinylpyrrolidone were tested individually or in combination to find an optimal mix able to prevent radiolysis without adversely influencing the radiochemical purity (RCP) or the functionality of the tracer. RCP and degree of radiolysis were assessed via thin layer chromatography and size exclusion chromatography for up to three hours after radiolabeling. Individually, the radioprotectants showed insufficient efficacy in reducing radiolysis when using high activities of 68Ga, while being limited in amount due to negative impact on radiolabeling of the tracer. A combination of 20% ethanol (VEtOH/VBuffer%) and 5 mg ascorbic acid proved successful in preventing radiolysis during labeling with starting activities up to 1–1.2 GBq of 68Ga, and is able to keep the tracer stable for up to at least 3 h after labeling at room temperature. The prevention of radiolysis by the combination of ethanol and ascorbic acid potentially allows radiolabeling compatibility of NOTA-sdAbs with all currently available 68Ge/68Ga generators. Additionally, a design is proposed to allow the incorporation of the radioprotectant in an ongoing diagnostic kit development for 68Ga labeling of NOTA-sdAbs.

Funder

Industrial Research Fund

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3