Abstract
Tramadol is a widely used, centrally acting, opioid analgesic compound, with additional inhibitory effects on the synaptic reuptake of serotonin and noradrenaline, as well as on the 5-HT2 and NMDA receptors. Preclinical and clinical evidence also suggests its therapeutic potential in the treatment of depression and anxiety. The effects of most widely used antidepressants on sleep and quantitative electroencephalogram (qEEG) are well characterized; however, such studies of tramadol are scarce. Our aim was to characterize the effects of tramadol on sleep architecture and qEEG in different sleep–wake stages. EEG-equipped Wistar rats were treated with tramadol (0, 5, 15 and 45 mg/kg) at the beginning of the passive phase, and EEG, electromyogram and motor activity were recorded. Tramadol dose-dependently reduced the time spent in rapid eye movement (REM) sleep and increased the REM onset latency. Lower doses of tramadol had wake-promoting effects in the first hours, while 45 mg/kg of tramadol promoted sleep first, but induced wakefulness thereafter. During non-REM sleep, tramadol (15 and 45 mg/kg) increased delta and decreased alpha power, while all doses increased gamma power. In conclusion, the sleep-related and qEEG effects of tramadol suggest antidepressant-like properties, including specific beneficial effects in selected patient groups, and raise the possibility of a faster acting antidepressant action.
Funder
Hungarian Brain Research Program
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献