Effects of Flowrate of Additional Shielding Gas on the Properties of Welded Seam Using Twin-Wire GMAW Welding for Duplex Stainless Steel

Author:

Hu Yu12,Xue Jiaxiang3

Affiliation:

1. Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization (Ministry of Agriculture and Rural Affairs), South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China

2. Tropical Fisheries Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Sanya 572018, China

3. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China

Abstract

Aiming to diminish the defects caused by high-speed pulsed GMAW (Gas Metal Arc Welding), such as lack of penetration, lack of fusion, humping and undercut, this paper proposes an improved twin-wire GMAW welding process by introducing the impact of additional shielding gas on the molten pool, and the effects of different shielding gas flowrates on the mechanical properties and microstructure of the welded seams were investigated. The purpose of introducing additional shielding gas was to use the airflow hood formed by gas injection to isolate air. The impact force generated by the jet might change the original natural solidification mode of the molten pool, which had the effect of improving weld formation and stirring the pool. The airflow hood formed during the process of the additional shielding gas jet impact welding of the molten pool might extend the protection time for the surface of the welding molten pool. The 2205 duplex stainless steel plate was used as the base material for the butt welding test, and the welded seams were subjected to a tensile test, hardness analysis, and metallographic analysis. The results indicated that as the flowrate of additional shielding gas increased in the range of 8 L/min~16 L/min, the width of the welded seam increased and the height of reinforcement decreased gradually. However, a weld seam with a lower middle region and higher sides would appear when the gas flowrate became excessively large. Under the identical welding current and for welding speeds of 160 cm/min, 180 cm/min and 200 cm/min, respectively, the joint formed under the flowrate of 12 L/min had the highest tensile strength (824.3 MPa) among the test specimens under different flowrates of 8 L/min, 12 L/min and 16 L/min. The test results indicated that the jet impact force was relatively moderate when the flowrate of the additional shielding gas was 12 L/min, and thus was optimal for the welded seam.

Funder

Major Science and Technology Plan of Hainan Province

Hainan Province Science and Technology Special Fund

National Key R&D Program of China

Modern Agriculture (FISH) Industrial Technology Special Fund System

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3