Effect of Heat Treatment on Corrosion and Mechanical Properties of M789 Alloy Fabricated Using DED

Author:

Han Seung-Chang1ORCID,Chaudry Umer Masood12ORCID,Cenalmor Sandra Bernardo3,Yeon Si Mo4,Yoon Jongcheon4,Lee Hyub4ORCID,Kim Kyeongtae12ORCID,Jun Tea-Sung12ORCID

Affiliation:

1. Department of Mechanical Engineering, Incheon National University, Incheon 22012, Republic of Korea

2. Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Republic of Korea

3. Department of Industrial Engineering, Polytechnic University of Catalonia, 08034 Barcelona, Spain

4. Additive Manufacturing Innovation Agency, Korea Institute of Industrial Technology, Siheung-si 15014, Republic of Korea

Abstract

The directed energy deposition (DED) process offers potential advantages, such as a large building space, limited dilutions, narrow heat-affected zones (HAZ) and potentially improved surface properties. Moreover, heat treatments have been reported to significantly improve the properties of the as-built sample by modifying the microstructure. In this study, the influences of various combinations of heating and cryogenic treatments on the mechanical performance and corrosion resistance of DED M789 steel have been critically investigated. The microstructure and hardness were examined to discuss the characteristics of the M789 parts in the as-printed and heat-treated states. The corrosion rate was determined from the weight loss monitoring based on the seawater immersion condition. The microstructural results revealed the distortion of martensite lattice and the formation of nano-carbide precipitates after the cryogenic treatment. Moreover, the microhardness of the cryogenically treated M789 steel was found to be significantly higher which was attributed to the precipitate strengthening and elimination of retained austenite, resulting from the increased volume fraction of carbides due to cryogenic treatment. The corrosion characteristics were also modified by the heating/cryogenic treatments, and the substrate-to-deposit ratio of the corrosion sample also substantially affected the overall corrosion rate.

Funder

Incheon National University

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3