A Review on Oxygen-Deficient Titanium Oxide for Photocatalytic Hydrogen Production

Author:

Chen Yan12,Fu Xiuli2,Peng Zhijian1ORCID

Affiliation:

1. School of Science, China University of Geosciences, Beijing 100083, China

2. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Photocatalytic technology based on the specific band structure of semiconductors offers a promising way to solve the urgent energy and environmental issues in modern society. In particular, hydrogen production from water splitting over semiconductor photocatalysts attracts great attention owing to the clean source and application of energy, which highly depends on the performance of photocatalysts. Among the various photocatalysts, TiO2 has been intensively investigated and used extensively due to its outstanding photocatalytic activity, high chemical stability, non-toxicity, and low cost. However, pure TiO2 has a wide band gap of approximately 3.2 eV, which limits its photocatalytic activity for water splitting to generate hydrogen only under ultraviolet light, excluding most of the inexhaustible sunlight for human beings. Fortunately, the band gap of semiconductors can be manipulated, in which introducing oxygen defects is one of the most effective measures to narrow the band gap of titanium oxides. This review considers the fundamentals of photocatalytic water splitting for hydrogen production over TiO2, discusses the latest progress in this field, and summarizes the various methods and strategies to induce oxygen defects in TiO2 crystals. Then, the next section outlines the modification approaches of oxygen-deficient titanium oxide (TiO2−δ) to further improve its photocatalytic performance. Finally, a brief summary and outlook of the studies on TiO2−δ photocatalysts for water splitting to produce hydrogen are presented.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3