Puzzles of Surface Segregation in Binary Pt–Pd Nanoparticles: Molecular Dynamics and Thermodynamic Simulations

Author:

Samsonov Vladimir1,Romanov Alexander1,Talyzin Igor1,Lutsay Alexander1,Zhigunov Dmitriy1,Puytov Vladimir1

Affiliation:

1. Physico-Technical Faculty, Tver State University, 33, Zhelyabova Str., Tver 170100, Russia

Abstract

Up till now, there have been extremely contradictory opinions and inadequate results concerning surface segregation in binary platinum–palladium (Pt–Pd) nanoparticles, including the problems regarding segregating components, as well as the size and temperature dependences of segregation. Taking into account such a situation, we investigated the surface segregation in Pt–Pd nanoparticles by combining atomistic (molecular dynamics) and thermodynamic simulations. For molecular dynamics experiments, the well-known program LAMMPS and the embedded atom method were employed. In the course of the atomistic simulations, two different sets of parameterizations for the Pt–Pt, Pd–Pd, and Pt–Pd interatomic interaction potentials were used. The thermodynamic simulation was based on solving the Butler equation by employing several successive approximations. The results obtained via atomistic simulation and thermodynamic simulation on the basis of the Butler equation were compared with each other, as well as with predictions that were based on the Langmuir–McLean equation and some experimental data. Both simulation methods (atomistic and thermodynamic) predicted the surface segregation of Pd, which diminishes with the nanoparticle size and with increasing temperature. Our simulation results do not confirm the predictions of some authors on surface segregation inversion, i.e., the reversal from the surface segregation of Pd to the surface segregation of Pt when diminishing the nanoparticle size.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3