Micro-Deformation and Fracture Features of Ti834 Titanium Alloy under Fatigue Loading

Author:

Wang Ning1,Jia Weiju2,Mao Xiaonan2,Zhou Wei2,Mao Chengliang2

Affiliation:

1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

2. Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China

Abstract

A sustained load holding period imposed during fatigue loading is detrimental to material performances, causing a sharp decline in the fatigue life of near-α titanium alloys. Therefore, the deformation discrepancies of dwell fatigue (DF) and low cycle fatigue (LCF) were studied for Ti834 titanium alloy with bimodal structures in this work. The fractographies after dwell fatigue and low cycle fatigue testing were characterized using scanning electron microcopy (SEM), and the crack propagation paths at the subsurface were investigated using an optical microscope (OM). In order to reveal the mechanism of fatigue damage, detailed dislocation structures were observed using transmission electron microcopy (TEM). The crack propagation paths in microscales and the dislocation distributions were observed in the LCF and DF. The reasons for the discrepancies are also discussed in this work, which effectively enhances the understanding of the dwell failure procedures. The results show that the near basal cracks are formed under dwell fatigue, and the deformation is highly localized at the boundary of αp grains under dwell fatigue. In contrast, during low cycle fatigue, the sample tends to deform homogenously. An intergranular fracture along the primary αp grains is formed due to the localized deformation during dwell fatigue. However, a transgranular fracture is formed in the primary αp grains under low cycle fatigue.

Funder

Xi’an Science and Technology Bureau Program of Shaanxi Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3