The Tribocorrosion Behavior of High-Nitrogen Bearing Stainless Steel in Acetic Acid at Various Applied Loads

Author:

Su Qiong12,Wang Xuhui123,Wang Hongling12,Huang Yaqi123,Wang Yanbin12,Li Zhenhua12

Affiliation:

1. School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, China

2. Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass, University of Gansu Province, Lanzhou 730030, China

3. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

High-nitrogen stainless steels, which are developed by replacing nickel with nitrogen, have been widely applied in manufacturing wear parts in mechanical engineering. In this study, the tribocorrosion performance of a ferritic high-nitrogen bearing stainless steel (40Cr15Mo2VN) under acetic acid solution with a pH of 3.0 was investigated under different loads ranging from 25 N to 125 N. Quantitative calculations indicated that pure mechanical wear was the predominant cause of material degradation, while the corrosion-accelerated wear component also played a crucial role. The material loss induced by both tribocorrosion and mechanical wear increased with increasing load, leading to severe delamination at sliding surfaces and larger wear debris.

Funder

The National Key Research and Development Program of China

The National Natural Science Foundation of China

The Basic Research Fund of Central Universities

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3