Fracture of Fe95Ni5 Alloys with Gradient-Grained Structure under Uniaxial Tension

Author:

Korchuganov Aleksandr1ORCID,Kryzhevich Dmitrij1,Zolnikov Konstantin1

Affiliation:

1. Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Akademicheskii 2/4, Tomsk 634055, Russia

Abstract

The fracture behavior of single- (fcc) and two-phase (fcc + bcc) Fe95Ni5 samples with gradient-grained structure, under uniaxial tension, was analyzed via molecular dynamics simulation. The study revealed that fracture initiation and propagation is always associated with grain boundaries. The fracture process develops in three stages. In the first stage, nanopores are formed in the boundaries of coarse grains. The total volume of nanopores at this stage increases slowly due to the formation of new nanopores. The second stage is characterized by a rapid increase in the total nanopore volume due to the formation of nanopores, their growth along the grain boundaries, and their coalescence. At the third stage, the total nanopore volume increases linearly with deformation due to the growth of the largest nanopores. Fracture of two-phase samples begins at higher strains compared to a single-phase sample. With an increase in the volume fraction of bcc lamellae in the original sample, the number of nanopores at the third stage of fracture decreases and tends to one.

Funder

Russian Science Foundation

Government Statement of Work for ISPMS SB RAS

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3