Purification of Waste Graphite from Crucibles Used in Photovoltaic Crystallization by an Alkali-Acid Method

Author:

Zhang Yonghang12,Chen Zhengjie123,Xie Keqiang123,Chen Xiaowei12,Hu Yiyou12,Ma Wenhui123

Affiliation:

1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China

3. The National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China

Abstract

The photovoltaic industry generates large amounts of waste graphite (WG) that contains useful metals that can be recycled into high-value products. This study elucidated the impurity elements and their existence states in WG, analyzed and verified the source of the main impurity phase SiC, and determined the SiC content to be 4.66%. WG was purified using an alkaline-acid method, whose optimal process parameters were a solid alkali ratio of 3, calcination temperature of 600 °C, calcination time of 120 min, HCl concentration of 1 M, and acid leaching time of 40 min. Under these conditions, a graphite product with a fixed carbon content of 98.45% was obtained. Impurities were determined to migrate via three pathways: (1) Most main elements (Al, K, and Si) in silicates were removed by alkaline roasting, while the remaining elements were dissolved in acid. (2) Impurities containing metal elements such as Fe, Mg, Ca, and Zn were decomposed in NaOH to form hydroxides or oxides that were dissolved in HCl. (3) Silicon carbide impurities were removed by the alkaline-acid method without decomposition and often existed with graphite in the acid-leaching slag.

Funder

National Natural Science Foundation of China

Major R&D project of Yunnan of China

Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3