Modifying Microstructure and Mechanical Properties of Mo-Nb Single Crystals via Thermal Annealing

Author:

Huang Li1,Zhang Wen1,Hu Zhongwu1,Yin Tao1,Guo Linjiang1,Zheng Hanyu1

Affiliation:

1. Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China

Abstract

Molybdenum-Niobium (Mo-Nb) single crystals possess excellent mechanical properties, such as high strength and low creep rate at high temperatures, which leads to Mo-Nb single crystals’ potential application in the irradiated and aerospace environment. Mechanical properties at high temperatures are closely related to structural defects, including the density of dislocation and low-angle grain boundaries in a single-crystal Mo alloy. It is well known that the density of defects is mainly contributed to by processing and annealing. To clarify the microstructural evolution of Mo-Nb single-crystal alloys, thermal annealing tests with temperatures varying from 1100 °C to 1700 °C were conducted. Two Nb contents (3 at.% and 6 at.%) were chosen to investigate the effect of Nb content on the thermal stability (≤1700 °C) of single-crystal Mo-Nb alloys. Samples with high Nb content (6 at.%) soften after annealing, while ductility at room temperature obviously enhances In the low Nb content (3 at.%) sample, however, hardening and softening occur after low (1100 °C) and high temperature annealing, respectively. The evolution of mechanical properties could be mainly attributed to the change of density in the low-angle grain boundary. Furthermore, the changing Nb element and dislocation density during annealing are still important to the strength and ductility of Mo-Nb single crystals.

Funder

Northwest Institute for Nonferrous Metal Research

Major Special Science and Technology in Shaanxi Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3