Leaching Kinetics of Hemimorphite with 5-Sulfosalicylic Acid

Author:

Li Yaohong12,Wen Shuming1,Cao Jing1,Wu Dandan1,Wang Yijie3

Affiliation:

1. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China

2. China Copper Industry Co., Ltd., Kunming 650093, China

3. Chinese Academy of Natural Resources Economics, Beijing 101149, China

Abstract

The kinetics of leaching zinc from hemimorphite was investigated. The factors that influence hemimorphite leaching were also evaluated, and a kinetic model was built. In addition, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) was used to investigate the changes of surface morphology before and after leaching. By decreasing particle size and increasing temperature, 5-sulfosalicylic acid concentration, and stirring speed, the leaching rate of hemimorphite can be enhanced. The shrinkage nucleus model describes the surface chemistry of leaching. The activation energy of hemimorphite by 5-sulfosalicylic acid in the leaching process was determined as 55.244 kJ/mol. The reaction rate based on the shrinkage nucleus model can be expressed by the semi-empirical formula:1−1−x1/3 =[k0C0.3385(r0)−0.6083(SS)0.4992exp(−55.244/RT)]t. At the condition of 50 °C of leaching temperature, 0.175 mol/L of 5-sulfosalicylic acid concentration, 82.5 μm of particle size and 650 rpm of stirring speed, the high leaching rates of zinc were obtained. After the reaction time of 15 min, the leaching rate of zinc reached more than 95%. According to the SEM-EDS results, the hemimorphite and leaching residue are distributed in blocks, but the particle size of the leaching residue is smaller, and the atomic concentrations of Zn and Si in the leaching residue are significantly lower than those in the hemimorphite, so the leaching effect is remarkable. Therefore, 5-sulfosalicylic acid solution would be an excellent leaching agent for zinc extraction from hemimorphite.

Funder

Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3