Tunable Complex Permittivity and Strong Microwave Absorption Properties of Novel Dielectric-Conductive ZnO/C Hybrid Composite Absorbents

Author:

Yan Junxiao1,Jia Hongyao1,Zhou Liang1,Wang Zhenjun1,Wang Hongbo1

Affiliation:

1. School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China

Abstract

Modern electronic information technology has led social life into inevitable electromagnetic pollution, making microwave absorbing materials more and more important. Herein, dielectric-conductive ZnO/C hybrid composite absorbents were prepared by two-step carbonization with ZnO powders and glucose as critical materials. The electrical conductivity, complex permittivity, and reflection loss were analyzed to study the dielectric and microwave absorption properties. Results show that the prepared ZnO/C composite absorbents exist in the form of rod-like ZnO dispersed in the irregular block carbon, and the complex permittivity of the composite absorbents can be adjusted via varying the carbonization temperature. The minimum reflection loss of −25.64 dB is achieved at 1.8 mm thickness for the composite absorbent with 50 wt.% absorbent content as the final carbonization temperature is 750 °C, and the optimum effective absorption bandwidth is 2.21 GHz at 9.64–11.85 GHz. The excellent microwave absorption properties of ZnO/C composite absorbents are attributed to the combination actions of dipole polarization, conductance loss, and interface polarization, which is significant for the purposeful design of superior microwave-absorbing materials with dielectric and conductive absorbents.

Funder

Key Research and Development Program in Shaanxi Province of China

Fundamental Research Funds for the Central Universities from Chang’an University

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3