Machine Learning Analyses Revealed Distinct Arterial Pulse Variability According to Side Effects of Pfizer-BioNTech COVID-19 Vaccine (BNT162b2)

Author:

Chen Chun-ChaoORCID,Chang Che-Kai,Chiu Chun-Chih,Yang Tsung-Yeh,Hao Wen-RuiORCID,Lin Cheng-Hsin,Fang Yu-Ann,Jian William,Hsu Min-Huei,Yang Tsung-LinORCID,Liu Ju-Chi,Hsiu HsinORCID

Abstract

Various adverse events and complications have been attributed to COVID-19 (coronavirus disease 2019) vaccinations, which can affect the cardiovascular system, with conditions such as myocarditis, thrombosis, and ischemia. The aim of this study was to combine noninvasive pulse measurements and frequency domain analysis to determine if the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) vaccination and its accompanying cardiovascular side effects will induce changes in arterial pulse transmission and waveform. Radial blood pressure waveform and photoplethysmography signals were measured noninvasively for 1 min in 112 subjects who visited Shuang-Ho Hospital for a BNT162b2 vaccination. Based on side effects, each subject was assigned to Group N (no side effects), Group CV (cardiac or vascular side effects), Group C (cardiac side effects only), or Group V (vascular side effects only). Two classification methods were used: (1) machine-learning (ML) analysis using 40 harmonic pulse indices (amplitude proportions, phase angles, and their variability indices) as features, and (2) a pulse-variability score analysis developed in the present study. Significant effects on the pulse harmonic indices were noted in Group V following vaccination. ML and pulse-variability score analyses provided acceptable AUCs (0.67 and 0.80, respectively) and hence can aid discriminations among subjects with cardiovascular side effects. When excluding ambiguous data points, the AUC of the score analysis further improved to 0.94 (with an adopted proportion of around 64.1%) for vascular side effects. The present findings may help to facilitate a time-saving and easy-to-use method for detecting changes in the vascular properties associated with the cardiovascular side effects following BNT162b2 vaccination.

Funder

Ministry of Science and Technology

Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan

111FRP-02 from the Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3