Plane Fitting in 3D Reconstruction to Preserve Smooth Homogeneous Surfaces

Author:

Xu YananORCID,So Yohwan,Woo Sanghyuk

Abstract

Photogrammetric techniques for weakly-textured surfaces without sufficient information about the R (red), G (green) and B (blue) primary colors of light are challenging. Considering that most urban or indoor object surfaces follow simple geometric shapes, a novel method for reconstructing smooth homogeneous planar surfaces based on MVS (Multi-View Stereo) is proposed. The idea behind it is to extract enough features for the image description, and to refine the dense points generated by the depth values of pixels with plane fitting, to favor the alignment of the surface to the detected planes. The SIFT (Scale Invariant Feature Transform) and AKAZE (Accelerated-KAZE) feature extraction algorithms are combined to ensure robustness and help retrieve connections in small samples. The smoothness of the enclosed watertight Poisson surface can be enhanced by enforcing the 3D points to be projected onto the absolute planes detected by a RANSAC (Random Sample Consensus)-based approach. Experimental evaluations of both cloud-to-mesh comparisons in the per-vertex distances with the ground truth models and visual comparisons with a popular mesh filtering based post-processing method indicate that the proposed method can considerably retain the integrity and smoothness of the reconstruction results. Combined with other primitive fittings, the reconstruction extent of homogeneous surfaces can be further extended, serving as primitive models for 3D building reconstruction, and providing guidance for future works in photogrammetry and 3D surface reconstruction.

Funder

Development of 3D Model Reconstruction Method based on Stereo Photogrammetry Technology Project of Korea Technology and Information Promotion Agency for SMEs

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3