Catalyst Recovery, Regeneration and Reuse during Large-Scale Disinfection of Water Using Photocatalysis

Author:

Bockenstedt JonathanORCID,Vidwans Niraj AshutoshORCID,Gentry TerryORCID,Vaddiraju Sreeram

Abstract

The deployment of photocatalysis for remediation of water has not yet been realized, although laboratory-scale studies have demonstrated promise. Accomplishing this requires the development of photocatalysis as a process, including studying its efficiencies in remedying water when high volumes of water are processed, and addressing the recovery, possible regeneration and reuse of the photocatalysts. To that end, this work is aimed at demonstrating the use of a custom-built mobile platform for disinfecting large quantities of water. The benchtop platform built is capable of processing 15.14 L (4 gallons) per minute of water, with possibility for further scale-up. Preliminary studies on the catalyst recovery, regeneration and reuse via gravity-assisted settling, centrifugation and air plasma treatment indicated that 77% of Aeroxide® P25 titania (TiO2) nanoparticle and 57% of porous TiO2 nanowire photocatalysts could be recovered and regenerated for further use. Overall, this study indicated that process improvements, including increasing the kinetics of the photocatalysis, and optimization of the efficacies of the catalyst recovery and regeneration processes will make it useful for water remediation on any scale. More importantly, the portable and flexible nature of the benchtop photocatalysis system makes it amenable for use in conjunction with existing technologies for remedying large quantities of water.

Funder

USDA National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3