Adaptive Controller Based on Spatial Disturbance Observer in a Microgravity Environment

Author:

Fan Chunguang,Xie Zongwu,Liu Yiwei,Li ChongyangORCID,Liu Hong

Abstract

In this paper, a new controller for an operating manipulator work in the space microgravity environment is proposed. First, on the basis of the load variation caused by microgravity, a sliding mode control method is used to model the gravity term, and the logistic function is introduced as the approaching function. An improved sliding mode reaching law is proposed to control the manipulator effectively, and Lyapunov theory is used to deduce its closed-loop stability. A friction compensation scheme, which regards friction as disturbance, is introduced to the microgravity environment, and a space disturbance observer (SDO) is designed from the viewpoint of disturbance suppression to identify the friction characteristics of the control system accurately. To model the lagging friction phenomenon caused by velocity inversion during operation tasks, an adaptive compensation scheme based on the LuGre model is proposed. Finally, the design of a manipulator system, which consists of a robot arm, dexterous hand, teleoperation system, central controller, and visual system, is presented. On-orbit maintenance and capture experiments are carried out successively. The effectiveness and reliability of the controller are verified, and the on-orbit operation tasks are completed successfully.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

1. Robonaut: the 'short list' of technology hurdles

2. The cog project: Building a humanoid robot;Brooks,1999

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3