Abstract
Future renewable energy communities will reshape the paradigm in which we design and control efficient power systems at the district level. In this manner, the focus will be fundamentally shifted towards sustainable related concepts such as self-consumption, self-sufficiency and net energy exchanged with the grid. In this context, the paper presents a novel approach for optimally designing and controlling the photovoltaic plant and energy storage systems for a metro station in order to increase collective self-consumption and self-sufficiency at the district level. The methodology considers a community of several households connected to a subway station and focuses on the interaction between energy sources and consumers. Furthermore, the optimal solution is determined by using a Mixed Integer Linear Programming Approach, and the impact of different configurations on the overall district benefit is investigated by using several simulation scenarios. The work presents a detailed case study to underline the benefits and flexibility offered by the energy storage system in comparison with a scenario involving only a photovoltaic plant.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献