Abstract
We demonstrate a working functional prototype of a cooperative perception system that maintains a real-time digital twin of the traffic environment, providing a more accurate and more reliable model than any of the participant subsystems—in this case, smart vehicles and infrastructure stations—would manage individually. The importance of such technology is that it can facilitate a spectrum of new derivative services, including cloud-assisted and cloud-controlled ADAS functions, dynamic map generation with analytics for traffic control and road infrastructure monitoring, a digital framework for operating vehicle testing grounds, logistics facilities, etc. In this paper, we constrain our discussion on the viability of the core concept and implement a system that provides a single service: the live visualization of our digital twin in a 3D simulation, which instantly and reliably matches the state of the real-world environment and showcases the advantages of real-time fusion of sensory data from various traffic participants. We envision this prototype system as part of a larger network of local information processing and integration nodes, i.e., the logically centralized digital twin is maintained in a physically distributed edge cloud.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献