Abstract
Ternary low melting point mixtures with the addition of LiNO3 and Ca(NO3)2 have been presented as direct system candidates for CSP technologies due to having better physical and chemical properties than those of Solar Salt. In this study, thermal, physical and chemical properties are measured as is the corrosive behavior of stainless alloy VM12 (Cr 12%) when in contact with Solar Salt, 60% NaNO3-40% KNO3 (wt.%) and ternary 46% NaNO3-19% Ca(NO3)2-35% LiNO3 (wt.%). Gravimetric weight change measurements were performed on the test specimens, which were tested under accelerated fluid conditions (0.2 m s−1) at 500 °C for 2000 h. This research confirms the potential of this novel formulation as a thermal storage medium and validates the suitability of ferritic VM12-SHC stainless steel as a structural material for CSP technology with Solar Salt. Meanwhile, the results obtained by scanning electron microscopy and X-ray diffraction indicate a reduction in the protective character of the oxide layer formed on this alloy when the medium contains calcium and lithium components.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献