Abstract
This paper presents a buck converter with a novel constant frequency controlled technique, which employs the proposed frequency detector and adaptive on-time control (AOT) logic to lock the switching frequency. The control scheme, design concept, and circuit realization are presented. In contrast to a complex phase lock loop (PLL), the proposed scheme is easy to implement. With this novel technique, a buck converter is designed to produce an output voltage of 1.0–2.5 V at the input voltage of 3.0–3.6 V and the maximum load current of 500 mA. The proposed scheme was verified using SIMPLIS and MathCAD. The simulation results show that the switching frequency variation is less than 1% at an output voltage of 1.0–2.5 V. Furthermore, the recovery time is less than 2 μs for a step-up and step-down load transient. The circuit will be fabricated using UMC 0.18 μm 1P6M CMOS processes. The control scheme, design concept and circuit realization are presented in this paper.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献