A Digitalized Design Risk Analysis Tool with Machine-Learning Algorithm for EPC Contractor’s Technical Specifications Assessment on Bidding

Author:

Park Min-Ji,Lee Eul-BumORCID,Lee Seung-Yeab,Kim Jong-Hyun

Abstract

Engineering, Procurement, and Construction (EPC) projects span the entire cycle of industrial plants, from bidding to engineering, construction, and start-up operation and maintenance. Most EPC contractors do not have systematic decision-making tools when bidding for the project; therefore, they rely on manual analysis and experience in evaluating the bidding contract documents, including technical specifications. Oftentimes, they miss or underestimate the presence of technical risk clauses or risk severity, potentially create with a low bid price and tight construction schedule, and eventually experience severe cost overrun or/and completion delays. Through this study, two digital modules, Technical Risk Extraction and Design Parameter Extraction, were developed to extract and analyze risks in the project’s technical specifications based on machine learning and AI algorithms. In the Technical Risk Extraction module, technical risk keywords in the bidding technical specifications are collected, lexiconized, and then extracted through phrase matcher technology, a machine learning natural language processing technique. The Design Parameter Extraction module compares the collected engineering standards’ so-called standard design parameters and the plant owner’s technical requirements on the bid so that a contractor’s engineers can detect the difference between them and negotiate them. As described above, through the two modules, the risk clauses of the technical specifications of the project are extracted, and the risks are detected and reconsidered in the bidding or execution of the project, thereby minimizing project risk and providing a theoretical foundation and system for contractors. As a result of the pilot test performed to verify the performance and validity of the two modules, the design risk extraction accuracy of the system module has a relative advantage of 50 percent or more, compared to the risk extraction accuracy of manual evaluation by engineers. In addition, the speed of the automatic extraction and analysis of the system modules are 80 times faster than the engineer’s manual analysis time, thereby minimizing project loss due to errors or omissions due to design risk analysis during the project bidding period with a set deadline.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Industry 4.0 and Construction Contract Management: A Bibliometric Survey;Journal of Legal Affairs and Dispute Resolution in Engineering and Construction;2024-08

2. Choosing the right path for AI integration in engineering companies: A strategic guide;Journal of Systems and Software;2024-04

3. Practical Software Development: Leveraging AI for Precise Cost Estimation in Lump-Sum EPC Projects;2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);2024-03-12

4. Automation of text document classification in the budgeting phase of the Construction process: a Systematic Literature Review;Construction Innovation;2024-01-23

5. Intelligent detection on construction project contract missing clauses based on deep learning and NLP;Engineering, Construction and Architectural Management;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3