Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases

Author:

Pavlenko Anatoliy M.ORCID,Koshlak HannaORCID

Abstract

This paper presents the analysis of the main reasons for a significant decrease in the intensity of diffusion processes during the formation of gas hydrates; solutions to this problem are proposed in a new process flow diagram for the continuous synthesis of gas hydrates. The physical processes, occurring at the corresponding stages of the process flow, have been described in detail. In the proposed device, gas hydrate is formed at the boundary of gas bubbles immersed in cooled water. The dynamic effects arising at the bubble boundary contribute to the destruction of a forming gas hydrate structure, making it possible to renew the contact surface and ensure efficient heat removal from the reaction zone. The article proposes an assessment technique for the main process parameters in the synthesis of hydrates based on the criterion of thermodynamic parameters optimization. The optimization criterion determines the relationship of intensity of heat and mass transfer processes at the phase contact interface of reacting phases, correlating with the maximum GH synthesis rate, and makes it possible to determine optimum thermodynamic parameters in the reactor zone.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of the Dynamics of a Single Bubble;Energies;2024-08-24

2. Chemical Approach to Control Hydrate in Offshore Gas Production Facilities;International Journal of Innovative Science and Research Technology (IJISRT);2024-04-27

3. Numerical Modeling of the Behavior of Bubble Clusters in Cavitation Processes;Energies;2024-04-04

4. Application of Synthesized Hydrates in the National Economy;Environmental and Climate Technologies;2024-01-01

5. PROSPECTS FOR THE USE OF SYNTHESIZED GAS HYDRATES IN THE NATIONAL ECONOMY;Proceeding of 9th Thermal and Fluids Engineering Conference (TFEC);2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3