Methodology for Management of the Protection System of Smart Power Supply Networks in the Context of Cyberattacks

Author:

Kotenko IgorORCID,Saenko IgorORCID,Lauta Oleg,Karpov Mikhail

Abstract

This paper examines an approach that allows one to build an efficient system for protecting the information resources of smart power supply networks from cyberattacks based on the use of graph models and artificial neural networks. The possibility of a joint application of graphs, describing the features for the functioning of the protection system of smart power supply networks, and artificial neural in order to predict and detect cyberattacks is considered. The novelty of the obtained results lies in the fact that, on the basis of experimental studies, a methodology for managing the protection system of smart power supply networks in conditions of cyberattacks is substantiated. It is based on the specification of the protection system by using flat graphs and implementing a neural network with long short-term memory, which makes it possible to predict with a high degree of accuracy and fairly quickly the impact of cyberattacks. The issues of software implementation of the proposed approach are considered. The experimental results obtained using the generated dataset confirm the efficiency of the developed methodology. It is shown that the proposed methodology demonstrates up to a 30% gain in time for detecting cyberattacks in comparison with known solutions. As a result, the survivability of the Self-monitoring, Analysis and Reporting technology (SMART) grid (SG) fragment under consideration increased from 0.62 to 0.95.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference50 articles.

1. Assessment of Cyber-Resilience of Computer Networks based on Simulation of Cyber Attacks by the Stochastic Networks Conversion Method

2. Electric Power Grid, Modernization Trends, Challenges, and Opportunities;Henderson,2017

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3