Abstract
For the edge computing network, whether the end-to-end delay satisfies the delay constraint of the task is critical, especially for delay-sensitive tasks. Virtual machine (VM) migration improves the robustness of the network, whereas it also causes service downtime and increases the end-to-end delay. To study the influence of failure, migration, and recovery of VMs, we define three states for the VMs in an edge server and build a continuous-time Markov chain (CTMC). Then, we develop a matrix-geometric method and a first passage time method to obtain the VMs timely reliability (VTR) and the end-to-end timely reliability (ETR). The numerical results are verified by simulation based on OMNeT++. Results show that VTR is a monotonic function of the migration rate and the number of VMs. However, in some cases, the increase in task VMs (TVMs) may conversely decrease VTR, since more TVMs also brings about more failures in a given time. Moreover, we find that there is a trade-off between TVMs and backup VMs (BVMs) when the total number of VMs is limited. Our findings may shed light on understanding the impact of VM migration on end-to-end delay and designing a more reliable edge computing network for delay-sensitive applications.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献