Fatigue of Cold Recycled Cement-Treated Pavement Layers: Experimental and Modeling Study

Author:

Fedrigo William1ORCID,Heller Lucas Fraporti1ORCID,Brito Lélio Antônio Teixeira1,Núñez Washington Peres1

Affiliation:

1. Postgraduate Program in Civil Engineering: Civil Construction and Infrastructure, Federal University of Rio Grande do Sul, Ave. Osvaldo Aranha, 99, 706, Porto Alegre 90035-190, Brazil

Abstract

Fatigue is the main design criterion for cold recycled cement-treated mixtures (CRCTMs). However, the literature shows that the fatigue behavior of such mixtures is still not well known. For example, the effect of increasing reclaimed asphalt pavement (RAP) contents is yet a topic of discussion. This experimental and modeling study helps fill knowledge gaps on CRCTM fatigue behavior using long-term curing fatigue tests and three design methods currently being used in different countries. The objectives of this study were: (1) to characterize the mechanical and fatigue behavior of mixtures of RAP, aggregates and cement; (2) to evaluate the fatigue life of pavements with base and subbase layers of such mixtures using the novel Brazilian design method (MeDiNa); and (3) to compare the results with those obtained using the South African Pavement Engineering Manual (SAPEM) transfer functions and the American Association of State Highway and Transportation Officials AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software. The mixtures were tested in the laboratory using flexural static and cyclic tests, and the required parameters to use the methods were obtained. Experimental results and modeling demonstrated a superior fatigue behavior of recycled layers with higher RAP contents. On the other side, layers with lower RAP contents abruptly lost stiffness in short periods, making thicker structures necessary. Therefore, using high RAP contents is not only a sustainable practice, but also a technical benefit. The equivalent single axle loads obtained using the SAPEM were higher than those obtained using MeDiNa, while the PMED ones were higher than both previous methods. Despite the inherent differences, this suggests that MeDiNa is more conservative. It also highlights the importance of calibration based on long-term pavement performance data.

Funder

Brazilian government agencies National Council for Scientific and Technological Development

Coordination for the Improvement of Higher Education Personnel

Pavements Laboratory

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3