Abstract
Smart cities are urban environments where Internet of Things (IoT) devices provide a continuous source of data about urban phenomena such as traffic and air pollution. The exploitation of the spatial properties of data enables situation and context awareness. However, the integration and analysis of data from IoT sensing devices remain a crucial challenge for the development of IoT applications in smart cities. Existing approaches provide no or limited ability to perform spatial data analysis, even when spatial information plays a significant role in decision making across many disciplines. This work proposes a generic approach to enabling spatiotemporal capabilities in information services for smart cities. We adopted a multidisciplinary approach to achieving data integration and real-time processing, and developed a reference architecture for the development of event-driven applications. This type of applications seamlessly integrates IoT sensing devices, complex event processing, and spatiotemporal analytics through a processing workflow for the detection of geographic events. Through the implementation and testing of a system prototype, built upon an existing sensor network, we demonstrated the feasibility, performance, and scalability of event-driven applications to achieve real-time processing capabilities and detect geographic events.
Funder
Netherlands Organization for International Cooperation in Higher Education
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献