Intelligent Clinical Decision Support

Author:

Pinsky MichaelORCID,Dubrawski ArturORCID,Clermont Gilles

Abstract

Early recognition of pathologic cardiorespiratory stress and forecasting cardiorespiratory decompensation in the critically ill is difficult even in highly monitored patients in the Intensive Care Unit (ICU). Instability can be intuitively defined as the overt manifestation of the failure of the host to adequately respond to cardiorespiratory stress. The enormous volume of patient data available in ICU environments, both of high-frequency numeric and waveform data accessible from bedside monitors, plus Electronic Health Record (EHR) data, presents a platform ripe for Artificial Intelligence (AI) approaches for the detection and forecasting of instability, and data-driven intelligent clinical decision support (CDS). Building unbiased, reliable, and usable AI-based systems across health care sites is rapidly becoming a high priority, specifically as these systems relate to diagnostics, forecasting, and bedside clinical decision support. The ICU environment is particularly well-positioned to demonstrate the value of AI in saving lives. The goal is to create AI models embedded in a real-time CDS for forecasting and mitigation of critical instability in ICU patients of sufficient readiness to be deployed at the bedside. Such a system must leverage multi-source patient data, machine learning, systems engineering, and human action expertise, the latter being key to successful CDS implementation in the clinical workflow and evaluation of bias. We present one approach to create an operationally relevant AI-based forecasting CDS system.

Funder

National Institute of Health

Defense Advanced Research Projects Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3