Abstract
COVID-19 was first diagnosed in Egypt on 14 February 2020. By the end of November 2021, over 333,840 cases and 18,832 deaths had been reported. As part of the national genomic surveillance, 1027 SARS-CoV-2 near whole-genomes were generated and published by the end of July 2021. Here we describe the genomic epidemiology of SARS-CoV-2 in Egypt over this period using a subset of 976 high-quality Egyptian genomes analyzed together with a representative set of global sequences within a phylogenetic framework. A single lineage, C.36, introduced early in the pandemic was responsible for most of the cases in Egypt. Furthermore, to remain dominant in the face of mounting immunity from previous infections and vaccinations, this lineage acquired several mutations known to confer an adaptive advantage. These results highlight the value of continuous genomic surveillance in regions where VOCs are not predominant and the need for enforcement of public health measures to prevent expansion of the existing lineages.
Funder
South African Department of Science and Innovation (DSI) and the South African Medical Research Council
Subject
Virology,Infectious Diseases
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Recent advances in COVID-19-induced liver injury: causes, diagnosis, and management;Inflammopharmacology;2024-08-10
2. Comparative analysis of COVID-19 and influenza prevalence among Egyptian pilgrims returning from Hajj and Umrah in 2022: epidemiology, clinical characteristics, and genomic sequencing;Archives of Public Health;2024-01-12
3. Comparison of SARS-Cov-2 omicron variant with the previously identified SARS-Cov-2 variants in Egypt, 2020–2022: insight into SARS-Cov-2 genome evolution and its impact on epidemiology, clinical picture, disease severity, and mortality;BMC Infectious Diseases;2023-08-18
4. Investigating the Potential Anti-SARS-CoV-2 and Anti-MERS-CoV Activities of Yellow Necklacepod among Three Selected Medicinal Plants: Extraction, Isolation, Identification, In Vitro, Modes of Action, and Molecular Docking Studies;Metabolites;2022-11-13
5. Anticoagulants as Potential SARS-CoV-2 Mpro Inhibitors for COVID-19 Patients: In Vitro, Molecular Docking, Molecular Dynamics, DFT, and SAR Studies;International Journal of Molecular Sciences;2022-10-13