A Techno-Economic Model for Wind Energy Costs Analysis for Low Wind Speed Areas

Author:

Adeyeye Kehinde A.ORCID,Ijumba NelsonORCID,Colton Jonathan S.ORCID

Abstract

The global population is moving away from fossil fuel technologies due to their many disadvantages, such as air pollution, greenhouse gases emission, global warming, acid rain, health problems, and high costs. These disadvantages make fossil fuels unsustainable. As a result, renewable energy is becoming more attractive due to its steadily decreasing costs. Harnessing renewable energy promises to meet the present energy demands of the African continent. The enormous renewable energy potential available across the African continent remains largely untapped, especially for wind energy. However, marginal and fair wind speeds and power densities characterize African wind energy resulting in low and unsustainable power in many areas. This research develops a techno-economic model for wind energy cost analysis for a novel, Ferris wheel-based wind turbine. The model is used to techno-economically analyze the siting of wind turbine sites in low wind speed areas on the African continent. The wind turbine’s technical performance is characterized by calculating the annual energy production and the capacity factor using the wind Weibull probability distribution of the cities and theoretical power curve of the wind turbine. Its economic performance is evaluated using annualized financial return on investment, simple payback period, and levelized cost of electricity. The techno-economic model is validated for 21 African cities and shows that the Ferris wheel-based design is very competitive with four current, commercial wind turbines, as well as with other sources of energy. Hence, the new wind turbine may help provide the economical, clean, renewable energy that Africa needs.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference91 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3