Effects of Automated Vehicle Models at the Mixed Traffic Situation on a Motorway Scenario

Author:

Fang XuanORCID,Li HexuanORCID,Tettamanti TamásORCID,Eichberger ArnoORCID,Fellendorf MartinORCID

Abstract

There is consensus in industry and academia that Highly Automated Vehicles (HAV) and Connected Automated Vehicles (CAV) will be launched into the market in the near future due to emerging autonomous driving technology. In this paper, a mixed traffic simulation framework that integrates vehicle models with different automated driving systems in the microscopic traffic simulation was proposed. Currently, some of the more mature Automated Driving Systems (ADS) functions (e.g., Adaptive Cruise Control (ACC), Lane Keeping Assistant (LKA), etc.) are already equipped in vehicles, the very next step towards a higher automated driving is represented by Level 3 vehicles and CAV which show great promise in helping to avoid crashes, ease traffic congestion, and improve the environment. Therefore, to better predict and simulate the driving behavior of automated vehicles on the motorway scenario, a virtual test framework is proposed which includes the Highway Chauffeur (HWC) and Vehicle-to-Vehicle (V2V) communication function. These functions are implemented as an external driver model in PTV Vissim. The framework uses a detailed digital twin based on the M86 road network located in southwestern Hungary, which was constructed for autonomous driving tests. With this framework, the effect of the proposed vehicle models is evaluated with the microscopic traffic simulator PTV Vissim. A case study of the different penetration rates of HAV and CAV was performed on the M86 motorway. Preliminary results presented in this paper demonstrated that introducing HAV and CAV to the current network individually will cause negative effects on traffic performance. However, a certain ratio of mixed traffic, 60% CAV and 40% Human Driver Vehicles (HDV), could reduce this negative impact. The simulation results also show that high penetration CAV has fine driving stability and less travel delay.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Adaptive Cruise Control (ACC) Operating Characteristics and User Interface: Standard J2399;Sayer,2003

2. Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas

3. The Economic Aspect of Using Different Plug-in Hybrid Driving Techniques in Urban Conditions

4. Market Forecast for Connected and Autonomous Vehicles,2021

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3