Performance Evaluation of 5G Waveforms for Joint Radar Communication over 77 GHz and 24 GHz ISM Bands

Author:

Khelouani ImaneORCID,Elbahhar FouziaORCID,Elassali Raja,Idboufker Noureddine

Abstract

The V2X environment poses many challenges to emerging wireless communication systems, while it is crucial to ensure the efficiency and safety of road users. Requiring continual localization of the surroundings and accurate obstacle detection while providing high reliability in dense networks and low latency in high-mobility environment communication systems imposes a challenge to the driver-assistance field given that we are overly limited in terms of frequency bands and resources. Hence, pooling of the available frequency resources between different applications can help increase the spectral efficiency. A new collaborative approach multiplexed in the time domain, namely RadCom, which can be described as a joint radar and communication system that performs both vehicle-to-everything communication and detection of the neighboring obstacles in the vehicular environment, has been proposed to overcome the limitations of the existing conventional radar system. Based on orthogonal frequency division multiplexing (OFDM), this RadCom system proved to be suitable up to now for V2X. Moreover, a new RadCom system based on universal frequency multi-carrier (UFMC), an advanced fifth-generation (5G) waveform, has been proposed to enhance the spectral efficiency and surmount the shortcomings induced by the OFDM waveform. This recent RadCom system has been studied in the new frequency range of 76–81 GHz; precisely, 77 GHz. Hence, in this paper, we propose to compare both subsystems of the proposed RadCom system over two different frequency carriers, 24 GHz and 77 GHz, and to adopt the proper system parametrization in order to meet appropriate wireless solutions for automotive RadCom systems.

Funder

Electronic Components and Systems for European Leadership Joint Undertaking

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference19 articles.

1. Itu-r m.2057-1; Systems Characteristics of Automotive Radars Operating in the Frequency Band 76–81 GHz for Intelligent Transport Systems Applications. ITU https://www.itu.int/en/Pages/default.aspx

2. LoRa Architecture for V2X Communication: An Experimental Evaluation with Vehicles on the Move

3. Survey of RF Communications and Sensing Convergence Research

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3