Resorption Thermal Transformer Generator Design

Author:

Hinmers SamuelORCID,Atkinson George H.ORCID,Critoph Robert E.ORCID,van der Pal Michel

Abstract

This work takes an empirical and evidence-based approach in the development of a resorption thermal transformer. It presents the initial modelling conducted to understand key performance parameters (coefficient of performance and specific mean power) before discussing a preliminary design. Experimental results from large temperature jump and isosteric heating tests have identified the importance of heat transfer in ammonia-salt systems. Both the heat transfer resistance between the salt composite adsorbent and the tube side wall, and the heat transfer from the heat transfer fluid to the tube side wall are key to realising resorption systems. The successful performance of a laboratory-scale prototype will depend on the reduction in these heat transfer resistances, and improvements may be key in future prototype machines. A sorption reactor is sized and presented, which can be scaled for length depending on the desired power output. The reactor design presented was derived using data on reaction kinetics constants and heat of reaction for calcium chloride reacting with ammonia that were obtained experimentally. The data enabled accurate modelling to realise an optimised design of a reactor, focusing on key performance indicators such as the coefficient of performance (COP) and the system power density. This design presents a basis for a demonstrator that can be used to collect and publish dynamic data and to calculate a real COP for resorption system.

Funder

Engineering and Physical Sciences Research Council

Innovate UK

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3