Abstract
In this paper, the influence of the number of ground motions on fragility analysis of 5 MW wind turbines under the excitation of aerodynamic and seismic loads is investigated to acquire the sufficient number of records for reasonable fragility estimation. Two scenarios, parked and normal operation, were simulated with the number of actual recorded ground motions ranging from 2 to 48. The fragility function parameters are estimated by utilizing the method of multiple stripe analysis (MSA), and the relationship between the number of ground motions and estimated parameters for each scenario is discussed. In addition, the influence of the number of ground motions on the range of estimated parameters with a 95% confidence interval is also discussed. The simulation results show that there are significant differences between the two scenarios in terms of fragility analysis for 5 MW wind turbines with the interaction of wind and seismic loads, and the lesser number of earthquakes is needed for a normal operation scenario compared to the parked scenario when obtaining the same accuracy fragility estimation. Furthermore, the appropriate number of ground motions to accurately estimate the fragility parameters of 5 MW wind turbines for the two scenarios is presented herein, which is almost unaffected by different wind spectra.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献