Abstract
Mobile machines using a hydrostatic transmission is highly efficient under lower working-speed condition but less capable at higher transport velocities. To enhance overall efficiency, we have improved the powertrain design by combining a hydrostatic transmission with a dual-clutch transmission (DCT). Compared with other mechanical gearboxes, the DCT avoids the interruption of torque transmission in the process of shifting without sacrificing more transmission efficiency. However, there are some problems of unstable torque transmission during the shifting process, and an excessive torque drop occurring at the end of the gear shift, which result in a poor drive comfort. To enhance the performance of the novel structural possibility of powertrain design, we designed a novel control strategy, which maintains the sliding in the torque phase and reduces the difference before and after the engagement, for the motor torque and the clutch torques during the shifting process, and then validated the control effect with model-based simulation. As a result, the control strategy employing clutch and motor torque control achieve a smooth shifting process since the drive torque is well tracked, and highly dynamical actuators are not required. As another benefit, only two calibration parameters are designed and actually needed to adjust the control performance systematically, even for any different sizes machines. Our research indicates the possibility to adopt dual-clutch in the field of construction machines.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献