Investigation of Mechanochemically Treated Municipal Solid Waste Incineration Fly Ash as Replacement for Cement

Author:

Pan Shuping,Ding Jiamin,Peng Yaqi,Lu Shengyong,Li Xiaodong

Abstract

Municipal solid waste incineration (MSWI) fly ash has been classified as hazardous waste in China because of the leachable toxic heavy metals and high concentrations of chlorides and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). Currently, the main treatment method is still landfilling after chemical treatment or cement solidification, and an effective approach to realize fly ash utilization is still lacking. In the present work, the fly ash was firstly water-washed to remove the soluble chlorine salts, which can improve the performance of the produced cement mortar in later work. Mechanochemical pre-treatment was adopted to destroy the PCDD/Fs and improve the heavy metals’ stabilization. The results show that 75% of PCDD/Fs can be degraded and that most of the heavy metals are stabilized. After the mechanochemical pre-treatment, the average particle size of the fly ash decreases to 2–5 μm, which is beneficial for promoting the activation energy and accelerating the hydration process in cement mortar production. The compressive and flexural strengths of the fly ash cement mortar improve to 6.2 MPa and 32.4 MPa, respectively, when 35% of the OPC is replaced by treated fly ash. The similarity in the 3-day and 28-day strength with or without the addition of the treated ash shows the light influence of the fly ash addition. Thus, the mechanochemical process can stabilize the heavy metals and activate the fly ash, allowing it to partly substitute ordinary Portland cement in building materials, such as cement raw materials and concrete.

Funder

Science and Technology Department of Zhejiang Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3