Modelling of Boil-Off and Sloshing Relevant to Future Liquid Hydrogen Carriers

Author:

Smith Jessie R.ORCID,Gkantonas SavvasORCID,Mastorakos EpaminondasORCID

Abstract

This study presents an approach for estimating fuel boil-off behaviour in cryogenic energy carrier ships, such as future liquid hydrogen (LH2) carriers. By relying on thermodynamic modelling and empirical formulas for ship motion and propulsion, the approach can be used to investigate boil-off as a function of tank properties, weather conditions, and operating velocities during a laden voyage. The model is first calibrated against data from a liquefied natural gas (LNG) carrier and is consequently used to investigate various design configurations of an LH2 ship. Results indicate that an LH2 ship with the same tank volume and glass wool insulation thickness as a conventional LNG carrier stores 40% of the fuel energy and is characterised by a boil-off rate nine times higher and twice as sensitive to sloshing. Adding a reliquefaction unit can reduce the LH2 fuel depletion rate by at least 38.7% but can increase its variability regarding velocity and weather conditions. In calm weather, LH2 boil-off rates can only meet LNG carrier standards by utilising at least 6.6 times the insulation thickness. By adopting fuel cell propulsion in an LH2 ship, a 1.1% increase in fuel delivery is expected. An LH2 ship with fuel cells and reliquefaction is required to be at least 1.7 times larger than an existing LNG carrier to deliver the same energy. Further comparison of alternative scenarios indicates that LH2 carriers necessitate significant redesigns if LNG carrier standards are desired. The present approach can assist future feasibility studies featuring other vessels and propulsion technologies, and can be seen as an extendable framework that can predict boil-off in real-time.

Funder

Engineering and Physical Sciences Research Council Doctoral Training Award

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3