Abstract
We report on the formation of semi-polycrystalline polyaniline, a novel electroactive polymeric material synthesized by a modified surfactant-free chemical route and its enhanced electrochemical capacitive behavior. The material exhibits uniformly arranged spindle-shaped morphology in scanning electron microscopy and well-defined crystallographic lattices in the high-resolution transmission electron microscopy images. The X-ray diffraction spectrum reveals sharp peaks characteristic of a crystalline material. The characteristic chemical properties of polyaniline are recorded using Fourier transform infrared technology and laser Raman spectroscopies. The cyclic voltammetry curves exhibit features of surface-redox pseudocapacitance. The specific capacitance calculated for the material is 551 F g−1 at a scan rate of 10 mV s−1. The cycle stability and the coulombic efficiency recorded at a current density of 12 A g−1 exhibited good stability (90.3% and 99.5%, respectively) over 3000 cycles.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献