Moisture Transfer Characteristics and Kinetics Determination for Insulated Paperboard in Hot-Pressing Process

Author:

Kong Lingbo,Zhao Jingyi,Li Jiahao,Yuan Yuejin

Abstract

The transport characteristics and kinetics of moisture in hot-pressing are crucial to controlling the insulated paperboard drying process. The effects of operating temperature (110, 120, and 130 °C) on moisture transfer characteristics of an insulated paperboard were investigated. The results showed that the hot-pressing process consists of four successive stages, i.e., the warm-up stage, the boiling-point temperature stabilization stage, the temperature slowly rising stage, and the constant temperature stage. It was observed that a higher temperature mainly affected the medium and later stages of the hot-pressing process. When the operating temperature increased from 110 to 130 °C, the maximum value of the drying rate increased by 16.04%, and the drying time decreased by 62.50% consequently. Furthermore, a new mathematical model used to describe the moisture transfer kinetics for the insulated paperboard hot-pressing was developed in this paper. The results from the proposed new model were evaluated with another eight commonly used models. It showed better predictions and satisfactorily described the moisture transfer kinetics of the insulated paperboard compared with other models under the investigated hot-pressing conditions. The values of R2, χ2, and root mean square error (RMSE) of the new model varied from 0.99961 to 0.99999, 0.00001 to 0.00005, and 0.00120 to 0.00599, respectively.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3