Persistence of Hg-Contaminated Soil Stabilization in Typical Areas of Dehua County, Fujian Province, China

Author:

Wang Rui,Chen Nan,Liu GuannanORCID,Ding Jianhua,Chen Ming,Zhang Jiawen

Abstract

The in-situ stabilization remediation of Hg-contaminated soil in Qianyang, Dehua County, Fujian Province, was studied through the pre-experiments (stabilization orthogonal experiment and pot experiment) and field plot experiments for two consecutive years. The pre-experiments results showed that the main factors of the stabilization were the initial concentration of Hg in the soil and the amount of amendment added, followed by the amendment type, while the aging time had less effect. When the initial concentration of Hg in the soil was less than 10 mg·kg−1 and the amendment (modified biochar with modified attapulgite) added ratio was 0.2–0.4%, indicating optimized stabilization effect. After one-time application of 6750 and 11,250 kg·hm−2 amendment in low (1.38 mg·kg−1), medium (2.46 mg·kg−1), and high (8.52 mg·kg−1) Hg-contaminated soils, it could accelerate the transformation of Hg from exchangeable to residual and oxidizable Hg, enhance the activities of catalase, urease, and invertase in the soil. After one year of remediation, the case of adding 6750 kg·hm−2 amendment showed a significant stabilization effect. Compared to the control group, the available Hg content in the soil and Hg content in the water spinach reduced to 52.1–62.0% and 58.2–66.6%, respectively. When the application amount was increased to 11,250 kg·hm−2, the reduction rates were 43.2–46.0% and 58.2–62.0%, respectively. After two years of remediation, the stabilization effect was weakened, but the available Hg content in the soil and the water spinach was still significantly lower than that of the control, indicating that the persistence of the stabilization was good. For the soil contaminated slightly by Hg, the Hg content in the water spinach within two years was lower than the limit value of the Chinese standard (0.01 mg·kg−1). Although the Hg content in the water spinach for the soil contaminated highly by Hg was higher than the limit value, it could reduce to 67.3%, indicating an acceptable stabilization effect on heavily contaminated soil.

Funder

Science & Technology Fundamental Resources Investigation Program

Geological Survey Projects

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3