Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage

Author:

Ye Zhaonian,Wang Yongzhen,Han Kai,Zhao Changlu,Han Juntao,Zhu Yilin

Abstract

Shared energy storage (SES) provides a solution for breaking the poor techno-economic performance of independent energy storage used in renewable energy networks. This paper proposes a multi-distributed energy system (MDES) driven by several heterogeneous energy sources considering SES, where bi-objective optimization and emergy analysis methods are used for the system’s optimal capacity planning and operating scheduling considering economic, environmental, and sustainable performances, and Nash bargaining is adopted for the reasonable distribution of benefits of MDES. Then, an energy system composed of four different DESs (distributed energy system) considering one Shared Energy Storage Operator (SESO) is taken as an example for further study, namely one to four shared energy storage multi-energy systems, where MDES with and without SESO are compared. The results reveal that the operation cost of MDES considering SESO and Nash bargaining is reduced by 3.03%, while all the distributed energy systems have lower operating costs, and SESO has an additional income of $142.4/day. Correspondingly, the emergy yield ratio, emergy sustainability index, and emergy investment ratio of the corresponding system increase by 5.15%, 3.83%, and 9.94%, respectively, wherein the environmental load rate increases by 1.67% because of the greater consumption reduction of renewable resources than that of non-renewable resources under the premise of reduced emergy consumption.

Funder

Special Plan for Improving the Scientific Research Level and Innovation Ability of Postgraduates of Beijing Institute of Technology

Youth Program of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3